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The problem of the development of secondary  free-convect ion currents  in forced turbulent 
flow in horizontal  tubes for relat ively weak thermal  gravitation influence i s analyt ical ly 
solved. The resul ts  of the solution are  compared to experimental  data. 

Experimental  data on local heat t r ans fe r  [1] and on velocity and tempera ture  profiles [2, 3] demon- 
strate that thermal  gravitational forces  exert  a substantial influence on turbulent flow and heat exchange 
in horizontal tubes. Thermogravi ta t ional  forces  can affect the s t ructure  of the turbulence, which resul ts  
in a variat ion in momentum and heat t r ans fe r  and direct ly  affects the averaged flow, which leads to the 
formation of secondary  f ree-convect ion currents  (as is the case in viscous-gravi ta t ional  flow). Secondary 
f ree-convect ion currents  for a turbulent flow may substantially differ f rom the pat tern of secondary cur-  
rents  for  v iscous-gravi ta t ional  flow in horizontal  tubes due to high anisotropy and inhomogeneity of the 
momentum and heat t ransfer .  

The boundaries and nature of the onset  of the influence of thermogravi tat ional  forces  on turbulent 
momentum and heat t r ans fe r  have been examined [4] assuming that they do not di rect ly  influence the ave r -  
aged flow. The threshold for  the influence of thermogravitat ional  forces  on the velocity, tempera ture ,  
frictional drag, and hea t - t r ans fe r  fields were clarified. The formation of secondary flows was not d is -  
cussed in this ar t ic le .  

In this work the development of secondary  f ree-convect ion flows in forced turbulent motion of an 
incompress ib le  liquid in horizontal  tubes will be discussed.  The problem is solved by assuming that ther -  
mogravitat ional  forces  do not affect turbulent t ransfer .  Conditions will be examined for a weak influence 
of thermogravi ta t ional  forces ,  i .e. ,  at relat ively tow Grashof  numbers  Gr = gflq wd4/x p2. 

By stating the problem this way we are  able to clar i fy the contribution of mass  forces  for averaged 
motion and to approximately descr ibe the flow at relat ively low Gr. 

We will write the kinetic equation for the eddy component as follows: 
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where r is the cur ren t  radius; x is the axial coordinate, counted off f rom the onset of heating; g0 is an 
angle measured  f rom the upper generatr ix;  t is  tempera ture ;  u, v, and w are  the axiaL, radial ,  and tan-  
gential components of the velocity, respect ively;  u is the kinematic v iscos i ty  coefficient; and fl is the 
thermal-expansion coefficienL 
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where -F  = 1.25 G r / R e R e , Z P r  i s  a sma l l  p a r a m e t e r ,  

To + = ( t w - t ) 0 P C p v , / q  w is  the ini t ial  t e m p e r a t u r e  d is t r ibu t ion  c h a r a c t e r i s t i c  f o r  f o r ced  flow without  the in -  
f luence of t h e r m o g r a v i t a t i o n ;  R = 2 r / d  = 1 - Y is the c u r r e n t  d i m e n s i o n l e s s  rad ius ;  d i s  the tube d i a m e t e r ;  
v ,  = V~w/p is the ve loc i ty  of f r ic t ion ;  V = v / u  and W = w / u ;  u is  the mean  r a t e  of flow; qw is  the heat  flux 
dens i ty  on the wall;  Re = u d / v ,  R e ,  = v , d / v  is the Reyno lds  number ,  P r  is P r a n d t l ' s  number ;  p is  densi ty;  
and Cp is  spec i f ic  heat .  

Suppose the t e m p e r a t u r e  prof i le  To + is  given by 

To + = 2.2 In ~ • B (Pr) (4) 

whe re  B(Pr)  is  the P rand t t  n u m b e r  funct ion de sc r ibed  a c c o r d i n g  to data  [5] by the e x p r e s s i o n  

B = 5 tn ( (5  Pr + 1 ) / 3 0 ) - ~  8.55 ~- 5Pr ; 

= v , y / v  is a d i m e n s i o n l e s s  coord ina te  counted off f r o m  the wall .  

Solving Eqs.  (2) and (4), we find an e x p r e s s i o n  that  d e s c r i b e s  the d i s t r ibu t ion  of the eddy component :  

~x ---- --  F {t.1 (In Y)~ + D In Y + C,} sin ~ (5) 
D = 2.2 In ~l~ -}- B (Pr)=4.5 lg Re + B (Pr) --5, ~la = v,d / 2 v 

The boundary  condit ion has the f o r m  

dgx = 0 ,  R--~ O ] 
OR 

q ) = x / 2  

Using  the defini t ion of gx  f r o m  Eq. (4) and the cont inui ty  equat ion 

O (RV) / OR + OW / OqD = 0 (6) 

we wr i te  down an equat ion for  d e t e r m i n i n g  the tangent ia l  component  of the ve loc i ty  W: 

o o . ~"-W 0-% (7) o-'~ R - - ~  (RW) + ~ = ( R ~ . 0  

R e p r e s e n t i n g  the d e s i r e d  function W in the f o r m  of a p roduc t  of two funct ions,  

W = F (R) sin q~ (8) 

the equation in partial derivatives of Eq. (7) is transformed into an ordinary differential equation, 

d~(RF) d(RF) (RF) i d (R~A) (9) 
dR 2 @ R dR 1~2 ~ " ~  

where  A = ~qx/sin qo. 

The problem will be solved under the following assumptions. 
i. The process is steady-state. 2. The physical properties of the 
liquid are constant except for a variation in density that can be taken 
into account in the mass force term. 3. Flow is stabilized, i.e., the 
variation of all the hydrodynamic variables in the longitudinal coor- 
dinate are negligibly small. 4. Molecular transfer is negligibly small 
in comparison with turbulent transfer. 5. Turbulent vorticity trans- 
fer is represented in a gradient form, i.e., v'a'x' = -~Sa'x/Sr. 6. The 
turbulent vorticity transfer coefficient is equal to the turbulent mo- 
mentum transfer coefficient and is described by Prandtl's dependence 
~/v=0.4~. 7. Prandtl's turbulence number PrT= 1.9. The heat flux 
density on the wall is constant and the flow region beyond the onset 
of the heated section where 8t/0x = const is considered. 

Equation (i) in linearized dimensionless form, taking into ac- 
count the above assumptions, takes the form 
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The gene ra l  so lut ion of Eq. (9), a c c o r d i n g  to [6], can be r e p r e s e n t e d  in the f o r m  

Substi tut ing the e x p r e s s i o n  fo r  A = a x / s i n  ~ f r o m  Eq. (5) in Eq. (10) and in tegra t ing ,  we find an ex -  
p r e s s i o n  fo r  the component  of ve loc i ty  W: 

where  the decompos i t i on  

is used  in in tegra t ing .  

In(i --R)---- - -  ~] R~'/n 

1 

I F d R  = 0; 2) F I R=I = 0; 
0 

To find the cons tan t s  C1, C2, and C 3 we use  the fol lowing condit ions:  1) 

3) when R = 0 ,  F is finite.  

Using Eq. (11), the cont inui ty  equat ion (6), and the boundary  condit ion V] R = I = 0 ,  we find an e x p r e s -  
sion fo r  the radia l  component  of the ve loc i ty ,  

co 71--1 

L Y ] V == - -  F ~ n n (n 4-  t )  R -}-/~n+l t (12) (n_~l) in_}_3) D - -  2.2 -~- cosq~ 

F i g u r e  1 dep ic t s  the d i s t r ibu t ion  of the tangent ia l  component  of ve loc i ty  W in the hor izon ta l  c e n t e r -  
l ine plane and the radia l  componen t  of ve loc i ty  V in the ve r t i ca l  c en t e r - l i ne  plane ca lcu la ted  fo r  P r  = 0.7 
(curves  1) and P r  = 3.5 ( cu rves  2) and Re = 104 and Re = 5 �9 101 when F = 10 -2. The d i f f e rence  of the cu rves  
fo r  Re = 104 and Re =5 �9 104 is ins ignif icant ,  so tha t  l ines  a r e  drawn in the f igure  c o n s t r u c t e d  f o r  the mean  
va lues  fo r  the given in t e rva l  of Re number s .  When R = 0, the de r iva t i ve s  0V/0R and 0W/3R a r e  f inite.  
This  is  due to the use of  Eq. (3) in the ca lcula t ion which does  not sa t i s fy  0 t /0 r [  r=0 =0. 

The d i s t r ibu t ion  of the a x i a l - v e l o c i t y  componen t  u and of  t e m p e r a t u r e  will be found f r o m  the equat ions  

i o Ou 0uo ._}  t a P  ( 1 3 )  
r Or r s - ~ ' r = v T  p Ox 
t O Ot @to Oto 

re ~-r = -]- (14) r 0r v - ~  u0 0 /  

in which convect ion t e r m s  (the f i r s t  t e r m s  in the r igh t  s ides  of the equations)  a r e  wr i t t en  unde r  the a s -  
sumpt ion  that  u = u 0 and t = to, i .e . ,  they c o r r e s p o n d  to d i s t r ibu t ions  without  the inf luence  of  t h e r m o g r a v i -  
tati on. 

We obtain by so lv ing  Eqs.  (13) and (14) e x p r e s s i o n s  for  d i m e n s i o n l e s s  ve loc i ty  and t e m p e r a t u r e  

T + _-- To + - -  ( r  h - -  TI) V + ( 0 T o  + / 0q) d~l [Qla - -  ~l) e / v]  -1 dq 
0 

U + = u / v , ,  V + = v / v , ,  T + =(t  w - t )  pc~v,/qw 

(15) 

(16) 

Equat ion (12) f o r  the r a d i a l - v e l o c i t y  componen t  is  too awkward  to use  fo r  solving Eqs .  (15) and (16). 
The cu rves  ca lcu la ted  us ing  Eq. (12) and depic ted  in Fig .  1 a r e  t h e r e f o r e  app rox ima ted  by the e x p r e s s i o n  

V = -- 7.8F ~P-} Y~ cos ~ (17) 

Using Eqs .  (4) and (17), we obtain a dependence  that  d e s c r i b e s  the prof i le  of the axial  component  of  
ve loc i ty  and t e m p e r a t u r e ,  

Gr (18) 
U+ = Uo+ + 2"t05 Re 4"3~ K ~  ~2c~ 

T + : To + -}- 1.8-105 4 a? r ~12 cos qp (19) 
Be. VP~ 
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We a s s u m e  that  

U0 + = 2.5 In ~1 �9 5.5, ~ = 0.316 / Re ~ 

for  the ve loc i ty  and f r i c t iona l  d rag  when t h e r m o g r a v i t a -  

l ion i s  absent .  

Equations (18) and (19) demons t r a t e  that  the d e f o r -  
marion in the prof i le  of ve loc i ty  u and t e m p e r a t u r e  p r o -  
f i le appea r ,  in turn,  in the ve r t i ca l  c e n t e r - l i n e  plane.  

A calcula t ion  of the influence of t he rmograv i t a t i ona l  
fo rces  so le ly  in tu rbulen t  momentum t r a n s f e r  [4] y ie lds  
e x p r e s s i o n s  for  the d i s t r ibu t ion  of ve loc i ty  and t e m p e r a -  
tu re  near  the upper  and lower  g e n e r a t r i c e s :  

u+ = v0 + + 3 s  103_ (2o) 
Re" Pr 

T + = To + -4- 3.8.103 Gr Re3.~ p r Tl (21) 

where  the plus sign r e f e r s  to d i s t r ibu t ions  near  the upper  
ge ne r a t r i x  and the minus  sign, nea r  the lower  gene ra t r ix .  

tt  is  ev iden t ' f rom Eqs. (18)-(21) that  the influence 
of t he rmograv i t a t i ona l  fo rces  on the ve loc i ty  and t e m p e r -  
a tu re  p ro f i l e s  for  the two l imi t ing ca ses  (influence on t u r -  
bulent t r a n s f e r  or  on the ave raged  flow) d i f fe rs .  In both 
c a s e s  deformat ion  of the p ro f i l e s  occur s  in the same d i -  
r ec t ion  and begins at  app rox ima te ly  the same  values  of 
the p a r a m e t e r s .  

In Fig .  2 the d is t r ibu t ion  of t e m p e r a t u r e  in an a i r  
flow for Re = 5.2.104 and Gr = 109 ca lcu la ted  using Eqs. 
(19) (curves  6) and Eq. (21) (curves  5) i s  compared  to 
that found expe r imen ta l l y  (points i and 2). Curve 4 for  
the t e m p e r a t u r e  d i s t r ibu t ion  in the absence  of any in f lu-  
ence of t he rmograv i t a t i on  To + i s  cons t ruc ted  using ex-  
pe r imen ta l  data  (points 3), which r e f e r  to the hor izonta l  
c e n t e r - l i n e  plane.  It can be seen f rom Fig .  2 that  the in -  
fluence of t he rmograv i t a t i ona l  fo rces  in both ca ses  begins  
to appea r  p r a c t i c a l l y  s imul taneous ly .  A calcula t ion using 

Eq. (19) c o r r e s p o n d s  be t te r  to the expe r imen ta l  t e m p e r a t u r e  prof i le .  A subs tant ia l  deviat ion of the e x p e r -  
imenta l  points f rom the ca lcu la t ed  curve when ~ = 0 is  due to the s imul taneous  influence of t h e r m o g r a v i -  
ta t ional  fo rces  on turbulent  t r a n s f e r  and d i r e c t l y  on the ave raged  flow. The influence on turbulent  t r a n s -  
fe r  in this  case  is  subs tan t ia l .  

In F ig .  3 ca lcu la ted  d i s t r ibu t ions  of ve loc i ty  u / u  a and t e m p e r a t u r e  v = ( t w - t ) / ( t w - t a )  , where  u a and 
t a a r e  the va lues  on the axes  ( cu rves  5 and 6) a re  compared  to expe r imen ta l  data (points 3 and 4) in the 
ve r t i c a l  c e n t e r - l i n e  plane in an a i r  flow. The d i s t r ibu t ions  in the hor izon ta l  c e n t e r - l i n e  plane (poidts 1 
and 2) found e x p e r i m e n t a l l y  a r e  taken as  the d i s t r ibu t ions  of vetoci ty  (U/Ua) 0 and of t e m p e r a t u r e  v 0 in the 
absence  of any influence of t he rmograv i t a t ion .  The exper imen ta l  points 1 and 3 and the ca lcu la ted  curves  
5 r e f e r  to the va lues  Re = 5.2 �9 104 and Gr  = 108 and the expe r imen ta l  points 2 and 4 and ca leu la ted  curves  
6, to the va lues  Re =5.1 �9 104 and Gr=  1.55 �9 109. The va r ia t ion  in the Gr  number  under  these  condit ions 
leads  to subs tan t ia l  deformat ion  of the p ro f i l e s  in the ve r t i ca l  c en t e r - l i ne  plane,  the p ro f i l e s  r emain ing  
inva r i an t  in the hor izonta l  c e n t e r - l i n e  plane. 

The d i s t r ibu t ions  of u / u  a and ~ in the hor izonta l  c e n t e r - l i n e  plane en t i r e ly  coincide with that  de -  
p i t t e d  in Fig .  3 for  s m a l l e r  Gr  and ident ica l  Re. This co r r e sponds  to the r e s u l t s  of a t h e o r e t i c a l  solution 
of Eqs. (18) and (19), which d e m o n s t r a t e s  that  the p ro f i l e s  of the a x i a l - v e l o c i t y  component u and t e m p e r a -  
ture  in the hor izonta l  c e n t e r - l i n e  plane a r e  not de formed  at  the in i t ia l  stage of influence of t h e r m o g r a v i -  
rat ional  fo rces .  The d ive rgences  between the ca lcu la ted  and exper imen ta l  data  in the upper  pa r t  of the 
flow (left  s ide of f igure) i s  g r e a t e r  than in the lower  side (r ight  s ide of f igure).  This i s  due to our ne -  
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gleeting the influence of thermogravi ta t ional  forces  on turbulent t ransfer ,  which are  more  substantial near 
the upper generatr ix than near  the lower generatr ix .  

We calculate the variat ion in the local Nu number near the upper and lower genera t r ices  f rom the 
equations 

-1'+ : Pe,/Nu = Ta + -  Tao + -I- To + (22) 

Using Eq. (19), we determine the Nu nmnber at the initial stage of the development of secondary 
f ree-convect ion  flow, 

340Grcoscp ( Pr'~--i) -I N---U-U - i i + 2 . 4 ~  (23) 
Nuo ~f~Re 275 
Nu0 --~ Re Pr ~ / 8 

1.07 -- 12.7 ~f ~-~-8 (pr ~ -  l) 

In Fig. 4 the variat ion of the relat ive Nusselt  number Nu/Nu 0 at the upper and lower genera t r ices  
when x / d > 4 0  as a function of the Gr number for  different values of Re and P r  is depicted. Experimental  
data previously [1] obtained for  a water  flow (Pr  =3.5, Re = 1.2.104, curve b) and experimental  data for  an 
a i r  flew (P r=0 .7 ,  Re =5.1 �9 104, curve a) are  depicted in the figure. Curves calculated for the cor respond-  
ing experimental  data of pa r ame te r s  using Eq. (23) (solid lines) and using dependences obtained in [4], 
which consider  the influence of thermogravi ta t ion solely on turbulent t r ans fe r  ( d a s h - d o t  lines) are  also 
entered in Fig. 4. The agreement  between the resul ts  of the calculation for a i r  and the experimental  data 
appears  sa t is factory.  The resul ts  of one of the calculations agrees  better with the experimental  data near  
the upper generat r ix  and the resul ts  of the second calculation, with the experimental  data near  the lower 
generat r ix  for  the case of a water  flow. 

Such a difference in the nature of the variat ion of heat t r ans fe r  may be due to the fact that the r e -  
lations obtained for the initial stage of the process  do not completely take into account the influence of the 
P r  number, which may otherwise appear  at large Gr. Curves 1 in graph a of Fig. 4 correspond to Re = 
1.2.104, as does graph b. Theb roken  line in graph b was constructed using a previously  obtained [1] em-  
pirical  equation. 

We may obtain from Eq. (23) a relation that de termines  the "one-percent"  variat ion boundary of Nu 
on the upper (lower) generatr ix  as a resul t  of the influence of thermogravi ta t ional  forces .  This relation 
has the form 

Gr = 3. t0 -5 ]/'P'~ Re~ .75 [t § 2.4 (Pr'/, --  t) / Re'/,] (24) 

A comparison with experimental  data obtained for  a water  flow and an a i r  flow shows that Eq. (24) 
sharply demarca tes  the region of noticeable influence of thermogravi ta t ion on local heat t r ans fe r  in hor i -  
zontal tubes and the region of conditions lacking any thermogravi ta t ion influence. 
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